Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Mol Biol Rep ; 51(1): 480, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578387

RESUMO

Fragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, including autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct disorder caused by the premutation in the FMR1 gene. FXTAS is associated with elevated levels of FMR1 mRNA, leading to neurodegenerative manifestations such as tremors and ataxia.Mounting evidence suggests a link between both syndromes and mitochondrial dysfunction (MDF). In this minireview, we critically examine the intricate relationship between FXS, FXTAS, and MDF, focusing on potential therapeutic avenues to counteract or mitigate their adverse effects. Specifically, we explore the role of mitochondrial cofactors and antioxidants, with a particular emphasis on alpha-lipoic acid (ALA), carnitine (CARN) and Coenzyme Q10 (CoQ10). Findings from this review will contribute to a deeper understanding of these disorders and foster novel therapeutic strategies to enhance patient outcomes.


Assuntos
Síndrome do Cromossomo X Frágil , Doenças Mitocondriais , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Tremor/tratamento farmacológico , Tremor/genética , Antioxidantes/uso terapêutico , Ataxia/tratamento farmacológico , Ataxia/genética , Proteína do X Frágil de Retardo Mental/genética
2.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426491

RESUMO

Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and the single-gene cause of autism, is caused by decreased expression of the fragile X messenger ribonucleoprotein protein (FMRP), a ribosomal-associated RNA-binding protein involved in translational repression. Extensive preclinical work in several FXS animal models supported the therapeutic potential of decreasing metabotropic glutamate receptor (mGluR) signaling to correct translation of proteins related to synaptic plasticity; however, multiple clinical trials failed to show conclusive evidence of efficacy. In this issue of the JCI, Berry-Kravis and colleagues conducted the FXLEARN clinical trial to address experimental design concerns from previous trials. Unfortunately, despite treatment of young children with combined pharmacological and learning interventions for a prolonged period, no efficacy of blocking mGluR activity was observed. Future systematic evaluation of potential therapeutic approaches should evaluate consistency between human and animal pathophysiological mechanisms, utilize innovative clinical trial design from FXLEARN, and incorporate translatable biomarkers.


Assuntos
Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Receptores de Glutamato Metabotrópico , Animais , Criança , Humanos , Pré-Escolar , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Proteína do X Frágil de Retardo Mental/uso terapêutico , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Plasticidade Neuronal
3.
EMBO Mol Med ; 16(3): 506-522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374465

RESUMO

Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.


Assuntos
Compostos Benzidrílicos , Síndrome do Cromossomo X Frágil , Receptores de Glutamato Metabotrópico , Camundongos , Animais , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Receptores de Glutamato Metabotrópico/metabolismo , Modelos Animais de Doenças , Camundongos Knockout
4.
BMC Psychiatry ; 24(1): 23, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177999

RESUMO

BACKGROUND: Many rare genetic neurodevelopmental disorders (RGNDs) are characterized by intellectual disability (ID), severe cognitive and behavioral impairments, potentially diagnosed as a comorbid autism spectrum disorder or attention-deficit hyperactivity disorder. Quality of life is often impaired due to irritability, aggression and self-injurious behavior, generally refractory to standard therapies. There are indications from previous (case) studies and patient reporting that cannabidiol (CBD) may be an effective treatment for severe behavioral manifestations in RGNDs. However, clear evidence is lacking and interventional research is challenging due to the rarity as well as the heterogeneity within and between disease groups and interindividual differences in treatment response. Our objective is to examine the effectiveness of CBD on severe behavioral manifestations in three RGNDs, including Tuberous Sclerosis Complex (TSC), mucopolysaccharidosis type III (MPS III), and Fragile X syndrome (FXS), using an innovative trial design. METHODS: We aim to conduct placebo-controlled, double-blind, block-randomized, multiple crossover N-of-1 studies with oral CBD (twice daily) in 30 patients (aged ≥ 6 years) with confirmed TSC, MPS III or FXS and severe behavioral manifestations. The treatment is oral CBD up to a maximum of 25 mg/kg/day, twice daily. The primary outcome measure is the subscale irritability of the Aberrant Behavior Checklist. Secondary outcome measures include (personalized) patient-reported outcome measures with regard to behavioral and psychiatric outcomes, disease-specific outcome measures, parental stress, seizure frequency, and adverse effects of CBD. Questionnaires will be completed and study medication will be taken at the participants' natural setting. Individual treatment effects will be determined based on summary statistics. A mixed model analysis will be applied for analyzing the effectiveness of the intervention per disorder and across disorders combining data from the individual N-of-1 trials. DISCUSSION: These N-of-1 trials address an unmet medical need and will provide information on the effectiveness of CBD for severe behavioral manifestations in RGNDs, potentially generating generalizable knowledge at an individual-, disorder- and RGND population level. TRIAL REGISTRATION: EudraCT: 2021-003250-23, registered 25 August 2022, https://www.clinicaltrialsregister.eu/ctr-search/trial/2021-003250-23/NL .


Assuntos
Transtorno do Espectro Autista , Canabidiol , Síndrome do Cromossomo X Frágil , Mucopolissacaridoses , Esclerose Tuberosa , Humanos , Canabidiol/uso terapêutico , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Esclerose Tuberosa/complicações , Esclerose Tuberosa/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Qualidade de Vida , Resultado do Tratamento , Mucopolissacaridoses/induzido quimicamente , Mucopolissacaridoses/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Neuropharmacology ; 245: 109774, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37923121

RESUMO

There are no approved pharmacotherapies for fragile X syndrome (FXS), a rare neurodevelopmental disorder caused by a mutation in the FMR1 promoter region that leads to various symptoms, including intellectual disability and auditory hypersensitivity. The gene that encodes inhibitory serotonin 1A receptors (5-HT1ARs) is differentially expressed in embryonic brain tissue from individuals with FXS, and 5-HT1ARs are highly expressed in neural systems that are disordered in FXS, providing a rationale to focus on 5-HT1ARs as targets to treat symptoms of FXS. We examined agonist-labeled 5-HT1AR densities in male and female Fmr1 knockout mice and found no differences in whole-brain 5-HT1AR expression in adult control compared to Fmr1 knockout mice. However, juvenile Fmr1 knockout mice had lower whole-brain 5-HT1AR expression than age-matched controls. Consistent with these results, juvenile Fmr1 knockout mice showed reduced behavioral responses elicited by the 5-HT1AR agonist (R)-8-OH-DPAT, effects blocked by the selective 5-HT1AR antagonist, WAY-100635. Also, treatment with the selective 5-HT1AR agonist, NLX-112, dose-dependently prevented audiogenic seizures (AGS) in juvenile Fmr1 knockout mice, an effect reversed by WAY-100635. Suggestive of a potential role for 5-HT1ARs in regulating AGS, compared to males, female Fmr1 knockout mice had a lower prevalence of AGS and higher expression of antagonist-labeled 5-HT1ARs in the inferior colliculus and auditory cortex. These results provide preclinical support that 5-HT1AR agonists may be therapeutic for young individuals with FXS hypersensitive to auditory stimuli.


Assuntos
Epilepsia Reflexa , Síndrome do Cromossomo X Frágil , Colículos Inferiores , Animais , Feminino , Masculino , Camundongos , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Colículos Inferiores/metabolismo , Camundongos Knockout , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Serotonina
6.
Int Rev Neurobiol ; 173: 171-185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37993177

RESUMO

Matrix metalloproteinase-9 (MMP-9) belongs to the family of endopeptidases expressed in neurons and secreted at the synapse in response to neuronal activity. It regulates the pericellular environment by cleaving its protein components. MMP9 is involved in activity-dependent reorganization of spine architecture. In the mouse model of fragile X syndrome (FXS), the most common inherited intellectual disability and the most common single-gene cause of autism, increased synaptic expression of MMP-9 is responsible for the observed dendritic spine abnormalities. In this chapter, I summarize the current data on the molecular regulatory pathways responsible for synaptic MMP-9 expression and discuss the fact that MMP-9 is extracellularly localized, making it a particularly attractive potential target for therapeutic pharmacological intervention in FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Camundongos , Animais , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/uso terapêutico , Espinhas Dendríticas/metabolismo , Proteína do X Frágil de Retardo Mental/metabolismo , Proteína do X Frágil de Retardo Mental/uso terapêutico , Neurônios , Modelos Animais de Doenças
7.
Int Rev Neurobiol ; 173: 43-65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37993179

RESUMO

Engagement in challenging behaviour (e.g., aggression, self-injury) is reported to occur in neurodevelopmental disorders such as intellectual disabilities (ID), autism spectrum disorder (ASD), and fragile X syndrome (FXS). Common interventions to address these behaviours include both behavioural and pharmacological approaches. Although psychotropic medications are commonly used to address challenging behaviour in ID, ASD, and FXS, demonstration of the effectiveness of treatment is limited. Furthermore, research examining interaction effects between psychotropic medication, challenging behaviour, and environmental events within specific neurodevelopmental disorders such as ID, ASD, and FXS is scarce. The purpose of this chapter is to provide an overview of challenging behaviour within ID, ASD, and FXS and of the effectiveness of psychotropic medication as an intervention for challenging behaviour within these neurodevelopmental disorders. Finally, research examining how psychotropic medication may impact the relationship between challenging behaviour and environmental events is reviewed.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Deficiência Intelectual , Humanos , Transtorno do Espectro Autista/tratamento farmacológico , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Deficiência Intelectual/tratamento farmacológico , Psicotrópicos/uso terapêutico , Agressão
8.
J Clin Invest ; 134(5)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37651202

RESUMO

BACKGROUNDFXLEARN, the first-ever large multisite trial of effects of disease-targeted pharmacotherapy on learning, was designed to explore a paradigm for measuring effects of mechanism-targeted treatment in fragile X syndrome (FXS). In FXLEARN, the effects of metabotropic glutamate receptor type 5 (mGluR5) negative allosteric modulator (NAM) AFQ056 on language learning were evaluated in 3- to 6-year-old children with FXS, expected to have more learning plasticity than adults, for whom prior trials of mGluR5 NAMs have failed.METHODSAfter a 4-month single-blind placebo lead-in, participants were randomized 1:1 to AFQ056 or placebo, with 2 months of dose optimization to the maximum tolerated dose, then 6 months of treatment during which a language-learning intervention was implemented for both groups. The primary outcome was a centrally scored videotaped communication measure, the Weighted Communication Scale (WCS). Secondary outcomes were objective performance-based and parent-reported cognitive and language measures.RESULTSFXLEARN enrolled 110 participants, randomized 99, and had 91 who completed the placebo-controlled period. Although both groups made language progress and there were no safety issues, the change in WCS score during the placebo-controlled period was not significantly different between the AFQ056 and placebo-treated groups, nor were there any significant between-group differences in change in any secondary measures.CONCLUSIONDespite the large body of evidence supporting use of mGluR5 NAMs in animal models of FXS, this study suggests that this mechanism of action does not translate into benefit for the human FXS population and that better strategies are needed to determine which mechanisms will translate from preclinical models to humans in genetic neurodevelopmental disorders.TRIAL REGISTRATIONClincalTrials.gov NCT02920892.FUNDING SOURCESNeuroNEXT network NIH grants U01NS096767, U24NS107200, U24NS107209, U01NS077323, U24NS107183, U24NS107168, U24NS107128, U24NS107199, U24NS107198, U24NS107166, U10NS077368, U01NS077366, U24NS107205, U01NS077179, and U01NS077352; NIH grant P50HD103526; and Novartis IIT grant AFQ056X2201T for provision of AFQ056.


Assuntos
Fissura Palatina , Síndrome do Cromossomo X Frágil , Indóis , Hipertermia Maligna , Miotonia Congênita , Adulto , Animais , Criança , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Método Simples-Cego , Aprendizagem , Idioma
9.
Cells ; 12(15)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37566006

RESUMO

Phytocannabinoids, including the non-addictive cannabis component cannabidivarin (CBDV), have been reported to hold therapeutic potential in several neurodevelopmental disorders (NDDs). Nonetheless, the therapeutic value of phytocannabinoids for treating Fragile X syndrome (FXS), a major NDD, remains unexplored. Here, we characterized the neurobehavioral effects of CBDV at doses of 20 or 100 mg/kg in the Fmr1-knockout (Fmr1-KO) mouse model of FXS using two temporally different intraperitoneal regimens: subchronic 10-day delivery during adulthood (Study 1: rescue treatment) or chronic 5-week delivery at adolescence (Study 2: preventive treatment). Behavioral tests assessing FXS-like abnormalities included anxiety, locomotor, cognitive, social and sensory alterations. Expression of inflammatory and plasticity markers was investigated in the hippocampus and prefrontal cortex. When administered during adulthood (Study 1), the effects of CBDV were marginal, rescuing at the lower dose only the acoustic hyper-responsiveness of Fmr1-KO mice and at both doses their altered hippocampal expression of neurotrophins. When administered during adolescence (Study 2), CBDV at both doses prevented the cognitive, social and acoustic alterations of adult Fmr1-KO mice and modified the expression of several inflammatory brain markers in both wild-type littermates and mutants. These findings warrant the therapeutic potential of CBDV for preventing neurobehavioral alterations associated with FXS, highlighting the relevance of its early administration.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Camundongos , Camundongos Knockout , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Ansiedade/tratamento farmacológico
10.
Mol Neurobiol ; 60(11): 6410-6423, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37453994

RESUMO

Fragile X syndrome (FXS) is an inherited human mental retardation that arises from expansion of a CGG repeat in the Fmr1 gene, causing loss of the fragile X mental retardation protein (FMRP). It is reported that N-methyl-D-aspartate receptor (NMDAR)-mediated facilitation of long-term potentiation (LTP) and fear memory are impaired in Fmr1 knockout (KO) mice. In this study, biological, pharmacological, and electrophysiological techniques were performed to determine the roles of D-aspartate (D-Asp), a modulator of NMDAR, and its metabolizing enzyme D-aspartate oxidase (DDO) in Fmr1 KO mice. Levels of D-Asp were decreased in the medial prefrontal cortex (mPFC ); however, the levels of its metabolizing enzyme DDO were increased. Electrophysiological recordings indicated that oral drinking of D-Asp recovered LTP induction in mPFC from Fmr1 KO mice. Moreover, chronic oral administration of D-Asp reversed behavioral deficits of cognition and locomotor coordination in Fmr1 KO mice. The therapeutic action of D-Asp was partially through regulating functions of NMDARs and mGluR5/mTOR/4E-BP signaling pathways. In conclusion, supplement of D-Asp may benefit for synaptic plasticity and behaviors in Fmr1 KO mice and offer a potential therapeutic strategy for FXS.


Assuntos
Ácido D-Aspártico , Síndrome do Cromossomo X Frágil , Camundongos , Animais , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Aprendizagem , Potenciação de Longa Duração/fisiologia , Proteína do X Frágil de Retardo Mental/metabolismo , Camundongos Knockout , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
11.
Hum Genomics ; 17(1): 60, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420260

RESUMO

This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Masculino , Humanos , Feminino , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/epidemiologia , Síndrome do Cromossomo X Frágil/genética , Transtorno do Espectro Autista/genética , Metilação de DNA/genética , Mosaicismo , Variação Biológica da População , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo
12.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511622

RESUMO

Hyperacusis, i.e., an increased sensitivity to sounds, is described in several neurodevelopmental disorders (NDDs), including Fragile X Syndrome (FXS). The mechanisms underlying hyperacusis in FXS are still largely unknown and effective therapies are lacking. Big conductance calcium-activated potassium (BKCa) channels were proposed as a therapeutic target to treat several behavioral disturbances in FXS preclinical models, but their role in mediating their auditory alterations was not specifically addressed. Furthermore, studies on the acoustic phenotypes of FXS animal models mostly focused on central rather than peripheral auditory pathways. Here, we provided an extensive characterization of the peripheral auditory phenotype of the Fmr1-knockout (KO) mouse model of FXS at adulthood. We also assessed whether the acute administration of Chlorzoxazone, a BKCa agonist, could rescue the auditory abnormalities of adult mutant mice. Fmr1-KO mice both at 3 and 6 months showed a hyperacusis-like startle phenotype with paradoxically reduced auditory brainstem responses associated with a loss of ribbon synapses in the inner hair cells (IHCs) compared to their wild-type (WT) littermates. BKCa expression was markedly reduced in the IHCs of KOs compared to WT mice, but only at 6 months, when Chlorzoxazone rescued mutant auditory dysfunction. Our findings highlight the age-dependent and progressive contribution of peripheral mechanisms and BKCa channels to adult hyperacusis in FXS, suggesting a novel therapeutic target to treat auditory dysfunction in NDDs.


Assuntos
Síndrome do Cromossomo X Frágil , Hiperacusia , Animais , Camundongos , Vias Auditivas/metabolismo , Clorzoxazona , Modelos Animais de Doenças , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Camundongos Knockout
13.
Neurosci Lett ; 810: 137317, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37286070

RESUMO

Fragile X syndrome (FXS) is a developmental disorder characterized by intellectual disability and autistic-like behaviors. These symptoms are supposed to result from dysregulated translation in pre- and postsynapses, resulting in aberrant synaptic plasticity. Although most drug development research on FXS has focused on aberrant postsynaptic functions by excess translation in postsynapses, the effect of drug candidates on FXS in presynaptic release is largely unclear. In this report, we developed a novel assay system using neuron ball culture with beads to induce presynapse formation, allowing for the analysis of presynaptic phenotypes, including presynaptic release. Metformin, which is shown to rescue core phenotypes in FXS mouse model by normalizing dysregulated translation, ameliorated the exaggerated presynaptic release of neurons of FXS model mouse using this assay system. Furthermore, metformin suppressed the excess accumulation of the active zone protein Munc18-1, which is supposed to be locally translated in presynapses. These results suggest that metformin rescues both postsynaptic and presynaptic phenotypes by inhibiting excess translation in FXS neurons.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Camundongos , Modelos Animais de Doenças , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos Knockout , Neurônios/metabolismo , Sinapses/fisiologia
14.
Proc Natl Acad Sci U S A ; 120(27): e2302534120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37364131

RESUMO

Aberrant alternative splicing of mRNAs results in dysregulated gene expression in multiple neurological disorders. Here, we show that hundreds of mRNAs are incorrectly expressed and spliced in white blood cells and brain tissues of individuals with fragile X syndrome (FXS). Surprisingly, the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene is transcribed in >70% of the FXS tissues. In all FMR1-expressing FXS tissues, FMR1 RNA itself is mis-spliced in a CGG expansion-dependent manner to generate the little-known FMR1-217 RNA isoform, which is comprised of FMR1 exon 1 and a pseudo-exon in intron 1. FMR1-217 is also expressed in FXS premutation carrier-derived skin fibroblasts and brain tissues. We show that in cells aberrantly expressing mis-spliced FMR1, antisense oligonucleotide (ASO) treatment reduces FMR1-217, rescues full-length FMR1 RNA, and restores FMRP (Fragile X Messenger RibonucleoProtein) to normal levels. Notably, FMR1 gene reactivation in transcriptionally silent FXS cells using 5-aza-2'-deoxycytidine (5-AzadC), which prevents DNA methylation, increases FMR1-217 RNA levels but not FMRP. ASO treatment of cells prior to 5-AzadC application rescues full-length FMR1 expression and restores FMRP. These findings indicate that misregulated RNA-processing events in blood could serve as potent biomarkers for FXS and that in those individuals expressing FMR1-217, ASO treatment may offer a therapeutic approach to mitigate the disorder.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Decitabina , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Oligonucleotídeos , RNA
15.
Adv Neurobiol ; 30: 225-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928853

RESUMO

The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.


Assuntos
Canabidiol , Síndrome do Cromossomo X Frágil , Metformina , Masculino , Adulto , Animais , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Metformina/uso terapêutico , Canabidiol/uso terapêutico
16.
J Neurodev Disord ; 15(1): 1, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624400

RESUMO

Multiple lines of evidence suggest a central role for the endocannabinoid system (ECS) in the neuronal development and cognitive function and in the pathogenesis of fragile X syndrome (FXS). This review describes the ECS, its role in the central nervous system, how it is dysregulated in FXS, and the potential role of cannabidiol as a treatment for FXS. FXS is caused by deficiency or absence of the fragile X messenger ribonucleoprotein 1 (FMR1) protein, FMRP, typically due to the presence of >200 cytosine, guanine, guanine sequence repeats leading to methylation of the FMR1 gene promoter. The absence of FMRP, following FMR1 gene-silencing, disrupts ECS signaling, which has been implicated in FXS pathogenesis. The ECS facilitates synaptic homeostasis and plasticity through the cannabinoid receptor 1, CB1, on presynaptic terminals, resulting in feedback inhibition of neuronal signaling. ECS-mediated feedback inhibition and synaptic plasticity are thought to be disrupted in FXS, leading to overstimulation, desensitization, and internalization of presynaptic CB1 receptors. Cannabidiol may help restore synaptic homeostasis by acting as a negative allosteric modulator of CB1, thereby attenuating the receptor overstimulation, desensitization, and internalization. Moreover, cannabidiol affects DNA methylation, serotonin 5HT1A signal transduction, gamma-aminobutyric acid receptor signaling, and dopamine D2 and D3 receptor signaling, which may contribute to beneficial effects in patients with FXS. Consistent with these proposed mechanisms of action of cannabidiol in FXS, in the CONNECT-FX trial the transdermal cannabidiol gel, ZYN002, was associated with improvements in measures of social avoidance, irritability, and social interaction, particularly in patients who are most affected, showing ≥90% methylation of the FMR1 gene.


Assuntos
Canabidiol , Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Endocanabinoides/metabolismo , Proteína do X Frágil de Retardo Mental/genética
17.
Neuroscience ; 509: 113-124, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410632

RESUMO

Fragile XSyndrome (FXS) is a leading known genetic cause of Autism Spectrum Disorders (ASD) and intellectual disability. A consistent and debilitating phenotype of FXS is sensory hypersensitivity that manifests strongly in the auditory domain and may lead to delayed language and high anxiety. The mouse model of FXS, the Fmr1 KO mouse, also shows auditory hypersensitivity, an extreme form of which is seen as audiogenic seizures (AGS). The midbrain inferior colliculus (IC) is critically involved in generating audiogenic seizures and IC neurons are hyper-responsive to sounds in developing Fmr1 KO mice. Serotonin-1A receptor (5-HT1A) activation reduces IC activity. Therefore, we tested whether 5-HT1A activation is sufficient to reduce audiogenic seizures in Fmr1 KO mice. A selective and post-synaptic 5-HT1A receptor biased agonist, 3-Chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin-1-yl] methanone (NLX-101, 0.6, 1.2, 1.8 or 2.4 mg/kg, i.p.) was administered to Fmr1 KO mice 15 min before seizure induction. Whereas the 0.6 mg/kg dose was ineffective in reducing seizures, the 1.2, 1.8 and 2.4 mg/kg doses of NLX-101 dramatically reduced seizures and increased mouse survival. Treatment with a combination of NLX-101 and 5-HT1A receptor antagonists prevented the protective effects of NLX-101, indicating that NLX-101 acts selectively through 5-HT1A receptors to reduce audiogenic seizures. NLX-101 (1.8 mg/kg) was still strongly effective in reducing seizures even after repeated administration over 5 days, suggesting an absence of tachyphylaxis to the effects of the compound. Together, these studies point to a promising treatment option targeting post-synaptic 5-HT1A receptors to reduce auditory hypersensitivity in FXS, and potentially across autism spectrum disorders.


Assuntos
Síndrome do Cromossomo X Frágil , Serotonina , Camundongos , Animais , Receptor 5-HT1A de Serotonina , Camundongos Knockout , Convulsões/tratamento farmacológico , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Modelos Animais de Doenças
18.
Psychopharmacology (Berl) ; 240(1): 137-147, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36469097

RESUMO

RATIONALE: Fragile X syndrome (FXS) is the most common form of inherited intellectual disability (ID) and the leading monogenic cause of autism spectrum disorder (ASD). Serotonergic neurotransmission has a key role in the modulation of neuronal activity during development, and therefore, it has been hypothesized to be involved in ASD and co-occurring conditions including FXS. As serotonin is involved in synaptic remodeling and maturation, serotonergic insufficiency during childhood may have a compounding effect on brain patterning in neurodevelopmental disorders, manifesting as behavioral and emotional symptoms. Thus, compounds that stimulate serotonergic signaling such as psilocybin may offer promise as effective early interventions for developmental disorders such as ASD and FXS. OBJECTIVES: The aim of the present study was to test whether different protocols of psilocybin administration mitigate cognitive deficits displayed by the recently validated Fmr1-Δexon 8 rat model of ASD, which is also a model of FXS. RESULTS: Our results revealed that systemic and oral administration of psilocybin microdoses normalizes the aberrant cognitive performance displayed by adolescent Fmr1-Δexon 8 rats in the short-term version of the novel object recognition test-a measure of exploratory behavior, perception, and recognition. CONCLUSIONS: These data support the hypothesis that serotonin-modulating drugs such as psilocybin may be useful to ameliorate ASD-related cognitive deficits. Overall, this study provides evidence of the beneficial effects of different schedules of psilocybin treatment in mitigating the short-term cognitive deficit observed in a rat model of FXS.


Assuntos
Transtorno do Espectro Autista , Síndrome do Cromossomo X Frágil , Ratos , Animais , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/psicologia , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Serotonina , Cognição , Proteína do X Frágil de Retardo Mental
19.
ACS Chem Neurosci ; 13(24): 3629-3640, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36473166

RESUMO

There are no approved medicines for fragile X syndrome (FXS), a monogenic, neurodevelopmental disorder. Electroencephalogram (EEG) studies show alterations in resting-state cortical EEG spectra, such as increased gamma-band power, in patients with FXS that are also observed in Fmr1 knockout models of FXS, offering putative biomarkers for drug discovery. Genes encoding serotonin receptors (5-HTRs), including 5-HT1A, 5-HT1B, and 5-HT1DRs, are differentially expressed in FXS, providing a rationale for investigating them as pharmacotherapeutic targets. Previously we reported pharmacological activity and preclinical neurotherapeutic effects in Fmr1 knockout mice of an orally active 2-aminotetralin, (S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT). FPT is a potent (low nM), high-efficacy partial agonist at 5-HT1ARs and a potent, low-efficacy partial agonist at 5-HT7Rs. Here we report new observations that FPT also has potent and efficacious agonist activity at human 5-HT1B and 5-HT1DRs. FPT's Ki values at 5-HT1B and 5-HT1DRs were <5 nM, but it had nil activity (>10 µM Ki) at 5-HT1FRs. We tested the effects of FPT (5.6 mg/kg, subcutaneous) on EEG recorded above the somatosensory and auditory cortices in freely moving, adult Fmr1 knockout and control mice. Consistent with previous reports, we observed significantly increased relative gamma power in untreated or vehicle-treated male and female Fmr1 knockout mice from recordings above the left somatosensory cortex (LSSC). In addition, we observed sex effects on EEG power. FPT did not eliminate the genotype difference in relative gamma power from the LSSC. FPT, however, robustly decreased relative alpha power in the LSSC and auditory cortex, with more pronounced effects in Fmr1 KO mice. Similarly, FPT decreased relative alpha power in the right SSC but only in Fmr1 knockout mice. FPT also increased relative delta power, with more pronounced effects in Fmr1 KO mice and caused small but significant increases in relative beta power. Distinct impacts of FPT on cortical EEG were like effects caused by certain FDA-approved psychotropic medications (including baclofen, allopregnanolone, and clozapine). These results advance the understanding of FPT's pharmacological and neurophysiological effects.


Assuntos
Córtex Auditivo , Síndrome do Cromossomo X Frágil , Agonistas do Receptor 5-HT1 de Serotonina , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Córtex Auditivo/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Camundongos Knockout , Receptor 5-HT1D de Serotonina , Serotonina , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
20.
ACS Chem Neurosci ; 13(24): 3544-3546, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475635

RESUMO

Understanding how best to treat aspects of Fragile X syndrome has the potential to improve the quality of life of affected individuals. Such an effective therapy has, as yet, remained elusive. In this article, we ask those researching or affected by Fragile X syndrome their views on the current state of research and from where they feel the most likely therapy may emerge.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Proteína do X Frágil de Retardo Mental/genética , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...